A Ph.D. is usually necessary for independent research, industrial research, and college teaching, as well as for advancement to administrative positions. A master's degree is sufficient for some jobs in applied research, product development, management, or inspection and it may qualify one to work as a research technician or a teacher. A bachelor’s degree is adequate for some non-research jobs. In addition to required courses in chemistry and biology, undergraduate biological science majors usually study allied disciplines such as mathematics, physics, engineering, and computer science. Computer courses are beneficial for modeling and simulating biological processes, operating laboratory equipment, and performing research in the emerging field of bioinformatics.

Biologists use math as they plot graphs to help them understand equations, run small “trial and error” tests with some sample numbers when developing algorithms, and use the R project for analyzing protein sequences and structures. Biologists also use software with a lot of underlying mathematics.

About 39 percent of all biological scientists are employed by Federal, State, and local governments. Federal biological scientists work mainly for the U.S. Departments of Agriculture, Interior, and Defense and for the National Institutes of Health. Most other biologists work in scientific research and testing laboratories, the pharmaceutical and medical manufacturing industry, or colleges and universities.

Biologists who leave the field generally look for a career that will satisfy both their scientific and social interests. They become doctors, veterinarians, laboratory managers, statisticians, and even dentists at a higher salary than do those who leave most other professions.

EDUCATION
A Ph.D. is usually necessary for independent research, industrial research, and college teaching, as well as for advancement to administrative positions. A master's degree is sufficient for some jobs in applied research, product development, management, or inspection and it may qualify one to work as a research technician or a teacher. A bachelor’s degree is adequate for some non-research jobs. In addition to required courses in chemistry and biology, undergraduate biological science majors usually study allied disciplines such as mathematics, physics, engineering, and computer science. Computer courses are beneficial for modeling and simulating biological processes, operating laboratory equipment, and performing research in the emerging field of bioinformatics.

WHEN MATH IS USED
Biologists use math as they plot graphs to help them understand equations, run small “trial and error” tests with some sample numbers when developing algorithms, and use the R project for analyzing protein sequences and structures. Biologists also use software with a lot of underlying mathematics.

POTENTIAL EMPLOYERS
About 39 percent of all biological scientists are employed by Federal, State, and local governments. Federal biological scientists work mainly for the U.S. Departments of Agriculture, Interior, and Defense and for the National Institutes of Health. Most other biologists work in scientific research and testing laboratories, the pharmaceutical and medical manufacturing industry, or colleges and universities.

FACTS
Biologists who leave the field generally look for a career that will satisfy both their scientific and social interests. They become doctors, veterinarians, laboratory managers, statisticians, and even dentists at a higher salary than do those who leave most other professions.

CITATIONS
http://www.bls.gov/oes/current/oes191029.htm
http://degreedirectory.org/articles/What_are_Popular_Careers_in_Biology.html